
WebDC3 Web Interface Documentation
Release 1.0.3

M. Bianchi, P. Evans, A. Heinloo, J. Quinteros

October 11, 2013

CONTENTS

1 The WebDC3 web interface generator 1

2 User Guide 3
2.1 Introduction . 3
2.2 Getting started . 3
2.3 Event-based search . 4
2.4 Stations/channels search . 5
2.5 Request types . 6
2.6 Making a request . 6
2.7 Status/download . 7
2.8 Limitations . 7

3 Modules 9
3.1 Arclink . 9

4 Operator Instructions 13
4.1 WebDC3 web interface generator . 13
4.2 Python and JavaScript (JS) . 14
4.3 Basic Page Set . 15
4.4 The Loader . 15
4.5 Requirements . 15
4.6 Download . 16
4.7 Installation on Apache . 16
4.8 Customisation . 19
4.9 Maintenance . 20

5 Developer Notes 21
5.1 Principles . 21
5.2 Interfaces and name spaces . 21
5.3 Modules . 26
5.4 Configuration . 34

6 Change History 35
6.1 Initial revision . 35
6.2 v0.3 (2013-10-11) . 35

7 Indices and tables 37

A Self-study Tutorial 39
A.1 Introduction . 39

i

A.2 Event browsing . 39
A.3 Station browsing . 40
A.4 Requesting waveform data . 40
A.5 Requesting station metadata . 40
A.6 Request status and cleaning up . 41
A.7 Using catalog upload . 41
A.8 Data at different EIDA nodes . 41
A.9 Direction-based searches . 41
A.10 Last words . 42
A.11 Answers to exercises . 42

Index 45

ii

CHAPTER

ONE

THE WEBDC3 WEB INTERFACE
GENERATOR

This code was developed from the old webdc.eu portal developed at GFZ in the NERIES project. In the first stage
we decided to maintain the functionalities already achieved focusing on a code clean-up and technology upgrade to
accommodate the current EIDA needs.

The new web interface looks different, but functions more or less like the old one. Users can select waveforms, dataless
SEED, and inventory XML for downloading. The selection can be constrained by streams by network, station location,
channel and other properties, and the time windows chosen can be constrained based on user-selected events.

The web interface mainly uses JavaScript for presentation, with Python used to provide underlying services.

This documentation contains:

• A User Guide for getting data from the running web interface.

• Operator Instructions, for installing and configuring the software.

• The Developer Notes, for understanding the internal functions and contributing new code such as event services.

As an appendix, there is a Self-study Tutorial as a base to get your users familiar with what they can do with the tool.

We hope you find it useful.

1

WebDC3 Web Interface Documentation, Release 1.0.3

2 Chapter 1. The WebDC3 web interface generator

CHAPTER

TWO

USER GUIDE

2.1 Introduction

The WebDC3 web interface is primarily a tool for obtaining seismic waveforms. As the name suggests, it offers an
easy interactive point-and-click interface which is convenient for when you are exploring the available data, or for
smaller requests. But it can be used in a few interesting additional ways too.

There are a couple of ways to use WebDC3:

1. Event based - for exploring a catalog of seismic events (earthquakes), or for when you are looking
for waveforms recorded near the time of one or more specific events. You can select events by
multiple criteria, then pick from channels available at those times.

2. Station-based - to explore inventory to see what stations/streams are available and their parameters.

3. Time-span based - e.g. for obtaining station metadata over fixed periods of interest.

4. To examine the status of your requests.

There is some on-line help available as pop-ups in the [?] box at the top right of each box in the web interface. Clicking
on this takes you to the appropriate part of the help page. Also you can click on the link in the top right corner to see
the whole help page.

Note: The web interface is highly configurable. Your site operator may customize its appearance in
many different ways. The instructions here are written with the GFZ interface in mind, but the basic work
flow described below should be applicable to most sites’ implementations.

2.2 Getting started

Visit http://eida.gfz-potsdam.de/webdc3 or your local webinterface site. The screen should look something like this:

3

http://eida.gfz-potsdam.de/webdc3

WebDC3 Web Interface Documentation, Release 1.0.3

There are different areas visible. Most prominent is the world map which will show stations and events as they are
selected. On the left are different “control” boxes to pick stations and events, and submit your data request when you
are ready. Below the map is status information and a summary of the stations and events you have selected.

2.3 Event-based search

First pick a catalog from the pull-down menu in the “Select stations” area. By default the time period is 7 days Move
the start date back a few days. Pick the ‘GFZ’ catalog, and you will see some selectors to constrain your choice of
events below the time period area. You can use this to restrict your selection to a particular magnitude range e.g.
greater than 5.0. There are selectors for:

• magnitude

• depth

• region - rectangular (today) and circular (planned)

in addition to period of interest. When you are happy, press ‘Submit” in the “Select stations”. Now in the “Display
event/station” area you should see a list of events. They are also shown as circular features on the map area. These
can be sorted by different criteria (triangle symbols on the top of the table), and selected/deselected as you wish.

4 Chapter 2. User Guide

WebDC3 Web Interface Documentation, Release 1.0.3

2.3.1 Uploading a catalog of events

In addition to the public catalogs you can supply your own list of events. In the “Events Controls” box:

1. Choose “User Supplied”.

2. Click “Upload Catalog”. The “Catalog Input Dialog” box appears.

3. Specify what columns your data is in. You need only provide location (latitude, longitude, depth) and event
time.

4. Paste your catalog data into the text area provided. It can be much longer than fits in the box.

Note: The parser attempts to determine what separator and quoting conventions were used for your input, and
accommodate them, but this is not always effective. If there were problems, they should be reported on the
console (click the “View console” tab at the top of the page). If possible, use comma (‘,’) as a separator, and
quote any text strings, including the date-time string.

Note: The parser attempts to be lenient in interpreting your data. But date-times should be like:

YYYY-mm-ddTHH:MM:SS

or you will run into problems. Also to avoid confusing the sniffer, make sure your data is consistently formatted
from one row to the next. The parser also accepts a header row. If one or more rows in your CSV data are
unacceptable, they will be ignored, silently. In this case you will see zero events in the Event and Station List
box.

5. Click “Send” in the “Catalog Input Dialog” box. There is an acknowledgment pop-up. Maybe: click “Search”
in the “Events Controls” box to load your submission. If parsing was successful, you will see your events on
the map and in the “Event and Station List”.

2.4 Stations/channels search

In the “Explore stations” tab you are able to explore and select the available stations and channels. There are different
possibilities to filter the stations and channels. To follow them in top-bottom order (as they appear on the web page) is
recommended, but it is not mandatory.

Start by choosing a time range in years with the double slider at the top. The default values are 1980 1 and the current
year, which covers the whole range of operation. When you change the time selection, the drop-down lists are updated
to show the available information only for this time range.

You can then refine by specifying the network type, and/or a particular network.

When you want to select the stations there are three different ways to do it.

1. by station code: You can use the drop-down list to select one particular station or all of them.

2. by geographic region: You can enter the minimum and maximum latitude and longitude to define a rectangular
area. In this case, all the stations located inside this area, and that also meet the other selection criteria, will
be selected. The rectangular area can also be selected in the map, by pressing the left “Shift” and dragging the
mouse over the map.

3. by events: If you have already selected at least one event (it should be visible on the list under the map) you can
select stations located within a certain distance (in degrees) and azimuth of an event.

1 Remember, the web interface sits on top of Arclink, and Arclink inventory generally begins on 1 January 1980.

2.4. Stations/channels search 5

WebDC3 Web Interface Documentation, Release 1.0.3

To further select/filter the desired streams you have two options:

1. by code: Just click on the list of streams you would like to request. You can also used the “Shift” and “Ctrl”
keys to make multiple selections.

2. by sampling rate: With the slider control, select the preferred sample rate that you want to get from the station.
The web interface will return the channels which are closest to the preferred sampling rate. This means that at
least one channel will be retrieved per station.

Once the filter criteria are entered, you can click on “Search” and the resulting list of stations/channels will appear in
the list below the map.

After you have made one selection, you may append additional stations (use the “Append” button, where the “Search”
button was before you made a selection). Or you may replace your selection using the “Delete Stations” button on the
“Event and Station List”.

[BUG, October 2013: Appending extra streams to an existing set of stations
doesn’t work!]

2.4.1 Further filtering

If you take a look at the top of the “Stations list” you will see a small “Filter” button on the right part. When you click
on it, you are presented a summary of the available Location, Sampling, Instrument and Orientation Code. By default,
everything is checked and you can use these check boxes to further filter the channels you want in your request. For
instance, if in “Orientation Code” you left just “Z” checked you will include only the channel associated with the
vertical component.

Note: Remember that you need to click again on “Filter” for your changes to take place.

You can also use the check boxes at the left of every line (station) to select all the stations that you want and click on
“Freeze” to remove all the unchecked stations from the list.

When you finished selecting all the information related to events and stations you can go to the “Make Request”
control using the “Submit Request” tab.

2.5 Request types

There are two different types of information that you can get from this system:

• waveform data: there are two formats in which you can download, mini-SEED and full SEED.

• inventory metadata: there are also two formats in which you can download the information, dataless SEED and
ArcLink Inventory XML.

In order to be able to create any type of request you need to have at least one channel selected.

2.6 Making a request

On the “Submit Request” tab, you must first select the request type. You may enable bzip2 compression. Compression
is recommended for text-based formats like dataless SEED and XML. In the case of dataless and full SEED, you can
elect to use a response dictionary; this makes SEED metadata of some networks substantially smaller, but may cause
compatibility problems.

6 Chapter 2. User Guide

http://bzip.org/

WebDC3 Web Interface Documentation, Release 1.0.3

Next you can select an absolute or relative (to P and S waves) time window. If you haven’t selected any events, then
the absolute mode is the only choice, otherwise you almost certainly want to use the relative mode.

Finally click “Review” or “Submit”. “Review” opens an additional pop-up window, where further adjustments to the
final request can be made. Clicking “Submit” skips this review step.

At this point, it is checked whether the request size is within configured limits. If the check is passed, multiple Arclink
requests are created and routed to different data centers. WebDC refers to this set of Arclink requests corresponding
to a single submit action as a “request group”.

2.7 Status/download

On the “Download data” tab, in the “Recent Requests” box, you should now see a line corresponding to the request
group created during the previous step. Once routing is complete, you can click on the line to open a pop-up showing
the status of the request group.

Sometimes copies of data are stored in multiple data centers; in this case there are multiple routes to the data. If the
first route returns no data, it is possible to reroute the request to the next data center.

The following buttons are attached to each request group:

• Reroute: tries to send all lines with NODATA and RETRY status to alternative data centers if possible. If there
are no (more) alternative routes, you’ll see “No more routes found” on the console.

• Retry: same as Reroute, except that lines with RETRY status are sent to the same data center again.

• Resend: send the same request group again. This might be helpful if there are transient errors. Note that the
re-sent request does not include lines which could not be routed originally because no routes were found (those
lines are not part of the request group).

• Delete: deletes the request group in all data centers involved.

• Refresh: contacts the server(s) to update the processing status of the request group. If you click here during
a big request, you will likely see the number of “PROCESSING” lines increase and the number of “UNSET”
lines decrease.

In the “Manage Requests” box, you can display the status of all requests associated with your user ID (currently, e-mail
address) in all EIDA data centers. Here you also have the option of downloading all data volumes with a single click
if you have jDownloader running.

Note: You can get jDownloader from <http://jdownloader.org/>. We recommend that you avoid the
Windows exe installer and to use the MULTIOS zip instead. You can execute the jar file directly using
“java -jar -Xmx512m JDownloader.jar”.

2.8 Limitations

Using WebDC3 you can generate requests which involve many time windows for many streams/channels. These large
requests may be rejected by the underlying Arclink server. In this case you will see an alert box.

At GFZ, the current limits are

• 500 events

• 10000 total request lines (traces)

The web interface can break large events up into chunks, but it is still possible for very large requests to exceed limits.

2.7. Status/download 7

http://jdownloader.org/

WebDC3 Web Interface Documentation, Release 1.0.3

8 Chapter 2. User Guide

CHAPTER

THREE

MODULES

3.1 Arclink

3.1.1 webinterface

The webinterface module is an Arclink client for retrieving waveforms based on events or inventory.

Description

Configuration options for webinterface

This refers specificially to the application providing web services. See also JavaScript documentation elsewhere??

Note: This file is to be used with webinterface.xml for magical configuration documentation generation. Much more
to do.

Configuration

Note: webinterface is a standalone module and does not inherit global options.

etc/defaults/webinterface.cfg

etc/webinterface.cfg

~/.seiscomp3/webinterface.cfg

Note: arclink.* Parameters relating to connections to the Arclink server(s) supporting webinterface.

arclink.address
Type: string

The server to connect to, given as hostname:port Default is eida.gfz-potsdam.de:18002.

9

WebDC3 Web Interface Documentation, Release 1.0.3

arclink.timeout.request
Type: int

Timeout, in seconds, for XXX requests? Default is 300.

arclink.timeout.status
Type: int

Default is 300.

arclink.timeout.download
Type: int

Default is 300.

arclink.timeout.networkXML
Type: string

Default is eida.xml.

Note: event.* Parameters relating to event look-up services.

event.defaultLimit
Type: int

Maximum number of events which are returned if no other limit is set. Default is 500.

event.verbosity
Type: int

Verbosity level a la SeisComP logging.level. How chatty should event service be? This specifies logging on the
server. 0:quiet, 1:error, 2:warning, 3:info, 4:debug. Default is 2.

event.catalogs.ids
Type: list

List of all event services which will be enabled. Include ‘parser’ here to support file upload. For each service,
there must be an EventService object with a handler method suitable for the service. There may be more than
one instance of each EventService with different configuration parameters (e.g. different baseURL), in which
case they are distinguished by the names here. Default is geofon, comcat, emsc, parser.

event.catalogs.preferred
Type: string

The preferred service appears first in the pull-down menu of event services. Default is geofon.

event.catalogs.registeredOnly
Type: boolean

NOT NEEDED?? If this parameter is ‘true’, any service, e.g. {id}, with no description will be *hidden*.
That is, it will be registered, so requests to “/event/{id}” will be handled, but it will not be listed in the “Events
Services” dialog box. Only those services with a non-empty “description” attribute will be displayed. Default
is True.

event.names.lookupIfEmpty
Type: boolean

If an event service does not provide a region name (e.g. an F.-E. region) should we look it up? Default is True.

event.names.lookupIfGiven
Type: boolean

10 Chapter 3. Modules

WebDC3 Web Interface Documentation, Release 1.0.3

If an event service *does* provide a region name (e.g. an F.-E. region) should we look it up anyway, and override
what was supplied up? Default is False.

event.service.description
Type: string

Short description for this target event service. This is provided in the catalog (/event/catalogs). It is displayed in
the presentation layer under XXX.

event.service.baseURL
Type: string

URL of the target event service. In forming queries of service {name}, baseURL is followed by ‘?’ and any
parameters, followed by event.service.{name}.extraParams

event.service.extraParams
Type: string

Any additional string which needs appending to URLs for queries of the target event service. In forming queries
of service {name}, extraParams is added to form the URL event.service{name}.baseURL?{request
parameters}\&{extraParams}

Note: js.* Parameters relating to JavaScript. These are read in by the Python WSGI and served to the browser when
...

js.maptype
Type: string

Type of OpenLayers map to produce. Can be one of: wms, google (in the future OSM). Default is wms.

Note: js.google.* Type of Google map

js.google.layer
Type: string

Parameter for Google Default is Google Physical.

Note: js.wms.* Type of WMS map

js.wms.server
Type: string

URL, location of the WMS map server

js.wms.layer
Type: string

Parameter for WMS

Note: js.events.* These parameters are used in forming the Event Search Control.

js.events.date_startoffset
Type: string

Relative time for setting the default ‘start’ field in the Event Search Control. Use d, w, m, y for days, weeks,
months or years; this value is interpreted by the jQueryUI datepicker . Default is -7d.

3.1. Arclink 11

WebDC3 Web Interface Documentation, Release 1.0.3

js.events.magnitudes_minimum
Type: float

Default lower magnitude limit for events Default is 3.0.

js.events.depth_minimum
Type: float

Default smallest depth limit (in kilometres) for events. Default is 0.

js.events.depth_maximum
Type: float

Default largest depth limit (in kilometres) for events. Default is 1000.

js.events.coordinates_north
Type: float

Default northern latitude limit (in degrees) for rectangular region search. Default is 90.

js.events.coordinates_south
Type: float

Default southern latitude limit (in degrees) for rectangular region search. Default is -90.

js.events.coordinates_west
Type: float

Default western longitude limit (in degrees) for rectangular region search. Default is -180.

js.events.coordinates_east
Type: float

Default eastern longitude limit (in degrees) for rectangular region search. Default is 180.

12 Chapter 3. Modules

CHAPTER

FOUR

OPERATOR INSTRUCTIONS

4.1 WebDC3 web interface generator

Here we outline what you may need to do to get the web interface up and running on your site. Things may be different
for your site depending on your operating system, web server, network policies and so on.

The web interface mainly uses JavaScript for presentation, with Python used to provide underlying services.

Note: WebDC3 has a modular design. Here goes something about the modules:

• presentation

• events

• stations

• requests

• maps

• console

See the Developer Notes for more details about the modules.

4.1.1 Presentation

The design adopted for the implementation uses Ajax queries to load the individual page blocks. The final page
assembles those blocks. You (a web site operator) have complete freedom to build your own page layout from the
basic supplied blocks. The basic blocks are:

1. Event Search Control block

2. Station Search Control block

3. Mapping Control block (plot events and stations)

4. Request Control block

5. Submitting block

6. Status Control block

7. Status Results block

8. Console block

13

WebDC3 Web Interface Documentation, Release 1.0.3

Further blocks can be implemented and later integrated into the current architecture design. Since each block is a
self-contained unit we believe they will fit pretty well in any CMS or existing web pages at EIDA nodes, or even the
EIDA portal at ODC.

4.2 Python and JavaScript (JS)

The complete interface needs a Python back end running, using the WSGI interface. In the Apache web server this is
implemented in mod_wsgi. The back end uses the SeisComP seiscomp3 Python libraries for distance and travel time
computation, configuration, and logging. The Python back end is responsible for:

1. Fetch events information for the presentation layer (JavaScript) from different web services or databases.

2. Fetch NSLC (network-station-location-channel, i.e. inventory) information to the presentation layer from an
Arclink server.

3. Place requests to one or many Arclink servers.

4. Send e-mail to the user about her/his requests. FIXME: Do we still do that? Should we

5. Fetch the status information from the Arclink server and send it to the presentation layer.

and a JavaScript set of modules that will contact the back end services and render the page on the user’s browser client
and control the work flows on the page.

Also built in the back end there is an option to send configuration variables as key-value pairs from the server back end
to the client JavaScript layer. These variables are initially defined in a configuration file on the server. They are fetched
by the JavaScript layer and any module on the client has access to those variables that helps to guide the JavaScript in
rendering the page. One clear example of such variables is the Web Mapping Service (WMS) address (URL) that is

14 Chapter 4. Operator Instructions

WebDC3 Web Interface Documentation, Release 1.0.3

used by the Mapping control block. For the event control the default values for the magnitude filters and depth filters
are also obtained from the server through this mechanism. (See Configuration options for webinterface for details.)

4.3 Basic Page Set

Together with this package we are also supplying a set of static pages (HTML files) that can be used as a reference on
how to use the package to build your customized interface. During the development of the modules we try not to force
any possible work flow. See the content of the examples directory.

The basic page set is composed of two pages, one for making requests and one for checking status information. The
request page use demonstrate how to use the modules numbered as 1, 2, 3, 4, 5 and 6 (block list above) and the status
page uses blocks numbers 6 and 7.

Note: Make a table. Add screen shots. TODO

The customization of the pages should be done completely in HTML, using the ‘class’ and ‘id’ attributes of HTML
entities. The basic idea is that each block renders itself inside a certain ‘<div>’ element, identified by a special ‘id’.
Also some blocks can accept options that are passed through the ‘class’ attribute on the ‘<div>’. For example, the
apparently empty element:

<div id=’wi-StationSearchControl’></div>

would in the end be filled by the StationSearchControl block. And code like this:

<div id=’wi-StationSearchControl’ class=’nosensor’></div>

would load the the StationSearchControl block, but the class nosensor would inhibit the sensor selection dialog to
be present allowing each node to further customize its interface.

Note: Adding class=’nosensor’ doesn’t work, Aug 31 2013.

Also, since HTML allows multiple classes to the same container options related to formatting and option for the block
control would coexist on the same ‘<div>’. Furthermore on the customization part of the operator manual [REF] you
can find all the special ‘id’ and class options that are accepted by each control block to be associated to a certain ‘id’.

4.4 The Loader

To build the interface on your basic static HTML page all you need to do is to load the ‘loader.js’ script from the server
into your page. When this file is executed in the client, it loads the other required JavaScript modules, guaranteeing
the correct load order, as one module can depend on others.

If no ‘<div>’ with the ‘id’ of a particular module is not found on the page then that module will be disabled.

4.5 Requirements

• SeisComP(reg) 3 provides useful functions for configuration, geometry, travel
time computation. If you use the update-metadata.sh script, you will
need arclink_fetch, either included in the SeisComP distribution, or standalone
[http://www.seiscomp3.org/wiki/doc/applications/arclink_fetch].

4.3. Basic Page Set 15

http://www.seiscomp3.org/wiki/doc/applications/arclink_fetch

WebDC3 Web Interface Documentation, Release 1.0.3

• Seiscomp Python library ($SEISCOMP_ROOT/lib/python/seiscomp), including a recent version of
manager.py

(SeisComP 3 release >= 2013.200; there is a temporary version with this release in the
tools directory, which you can use to replace your installed version in $SEIS-
COMP_ROOT/lib/python/seiscomp/arclink).

• JavaScript libraries: jquery-base, jquery-ui [https://jquery.org/]

• OpenLayers. [http://www.openlayers.org/]

• Python, mod_wsgi (if using Apache). Also Python libraries for libxslt and libxml.

• Finally, users’ web browsers need to run JavaScript.

4.6 Download

Download the tar file / source from the GEOFON web page at http://geofon.gfz-potsdam.de/software. Or from github
at [URL TBD]. [Eventually it may be included in the SeisComP distribution.]

Untar into a suitable directory visible to the web server, such as /var/www/webinterface:

cd /var/www/webinterface
tar xvzf /path/to/tarfile.tgz

This location will depend on the location of the root (in the file system) for your web server.

4.7 Installation on Apache

To deploy the WebDC3 web interface on an Apache2 web server using mod_wsgi:

0. Unpack the files into the chosen directory. (See “download” above.) In these instructions we assume this
directory is /var/www/webinterface.

1. Enable mod_wsgi. For openSUSE, add ‘wsgi’ to the list of modules in the APACHE_MODULES variable in
/etc/sysconfig/apache2:

APACHE_MODULES+=" python wsgi"

and restart Apache. You should now see the following line in your configuration (in
/etc/apache2/sysconfig.d/loadmodule.conf for openSUSE):

LoadModule wsgi_module /usr/lib64/apache2/mod_wsgi.so

There may be a message like this in Apache’s error_log file, showing that mod_wsgi was loaded:

[Tue Jul 16 14:24:32 2013] [notice] Apache/2.2.17 (Linux/SUSE)
PHP/5.3.5 mod_python/3.3.1 Python/2.7 mod_wsgi/3.3 configured
-- resuming normal operations

Or look at the output from a2enmod -l - you should see wsgi listed.

2. Add the following lines to a new file, conf.d/webinterface.conf, or in default-server.conf, or in the configuration
for your virtual host:

WSGIScriptAlias /webinterface/wsgi /var/www/webinterface/wsgi/webdc2.wsgi
<Directory /var/www/webinterface/wsgi/>

Order allow,deny

16 Chapter 4. Operator Instructions

https://jquery.org/
http://www.openlayers.org/
http://geofon.gfz-potsdam.de/software

WebDC3 Web Interface Documentation, Release 1.0.3

Allow from all
</Directory>

Change /var/www/webinterface to suit your own web server’s needs. You may also need to add a section like:

<Directory /var/www/webinterface/>
Order allow,deny
Allow from all

</Directory>

3. Set environment for Apache: Apache needs the “SeisComP” environment variables set when it starts. The
seiscomp3 bin and man directories aren’t needed. For OpenSUSE, add the following lines, which are provided
by seiscomp print env, to /etc/sysconfig/apache2:

SEISCOMP_ROOT=/home/sysop/seiscomp3
LD_LIBRARY_PATH=/home/sysop/seiscomp3/lib
PYTHONPATH=/home/sysop/seiscomp3/lib/python

(Omit “export” and variable references, those will not work.)

For Debian and Ubuntu/Mint add the following lines to the envvars file:

Make SeisComP3 available for webinterface:
export SEISCOMP_ROOT=/home/sysop/seiscomp3/
export LD_LIBRARY_PATH=/home/sysop/seiscomp3/lib:$LD_LIBRARY_PATH
export PYTHONPATH=/home/sysop/seiscomp3/lib/python:$PYTHONPATH

4. Fix the path which is added in wsgi/webdc2.wsgi:

sys.path.insert(0, ’/var/www/webinterface/wsgi/’)

5. Copy webinterface.cfg to e.g. $SEISCOMP_ROOT/etc, or make a symbolic link from there to the webinterface
directory:

cd $SEISCOMP_ROOT/etc
ln -s /var/www/webinterface/wsgi/webinterface.cfg webinterface.cfg

6. Edit webinterface.cfg. This is discussed under “Configuration Options” below.

7. (TBD: Copy one of the top-level example pages to index.html and customise the site as you wish. October 2013:
Just skip this step!)

8. Start/restart the web server e.g. as root:

/etc/init.d/apache2 configtest
/etc/init.d/apache2 restart

9. Get initial metadata in the data directory. For instance you can run the update-metadata.sh script in that
directory.

10. Visit <http://localhost/webinterface>. You should see the front page.

11. Arrange for regular updates of the metadata in the data directory. Something like the following lines will be
needed in your crontab:

Daily metadata update for webinterface:
52 03 * * * /srv/www/webdc/webinterface/data/update-metadata.sh

4.7. Installation on Apache 17

http://localhost/webinterface

WebDC3 Web Interface Documentation, Release 1.0.3

4.7.1 Installation problems

If you see the basic web interface page, but none of the controls load, you may not have the underlying services
running correctly. Look in your web server log files (e.g. for Apache: access_log and error_log) for clues.

If you visit http://localhost/webinterface/wsgi/loader (or similar) on your machine you should see the definitions that
the JavaScript needs to get started:

var eidaJSSource=’/webinterface/js’;
var eidaCSSSource=’/webinterface/css’;
var eidaServiceRoot=’/webinterface/wsgi’;
var eidaDebug=false;
$(document).ready(function() { $.getScript(eidaJSSource + ’/loader.js’) });

If these definitions are not found, then you won’t have any controls. If they do show up, check that the URL paths
look correct.

You should also be able to visit the “web service” URLs in your browser e.g. going to:

http://localhost/webinterface/wsgi/event/catalogs

should show you something like this:

{"geofon": {"description": "GFZ (eqinfo)", "hasDepth": true, "hasDate":
true, "hasRectangle": true, ...

4.7.2 Configuration options

Configuration follows the SeisComP 3 pattern. Configuration is read from files using a ‘dotted’ notation e.g.:

js.wms.server = "http://myserver.org/wms/vmap0"

See the SeisComP documentation [http://www.seiscomp.org/] for details. Configuration variables beginning with “js”
are loaded by the JavaScript loader and made available to scripts in the client’s web browser. Other variables are only
available to the Python-based back end modules.

The following files are sought, and if present, their configuration information is loaded, in the order shown:

1. $SC3ROOT/etc/defaults/global.cfg

2. $SC3ROOT/etc/defaults/webinterface.cfg

3. $SC3ROOT/etc/global.cfg

4. $SC3ROOT/etc/webinterface.cfg

5. $HOME/.seiscomp3/global.cfg

6. $HOME/.seiscomp3/webinterface.cfg

Remember that $HOME is for the user running webinterface, which might be the same user as runs your web server.
It may be helpful to make a symbolic link from one of these locations to a file in the webinterface directory e.g.:

cd /var/www/.seiscomp3 ; ln -s /path/to/webinterface/wsgi/webinterface.cfg .

At a minimum, you will need to set arclink.address to point to your Arclink server, and EMAIL_ADDR etc. to
something suitable for your site. Other options should be suitable for getting started. For full details of all configuration
options, see full-config-options.

18 Chapter 4. Operator Instructions

http://localhost/webinterface/wsgi/loader
http://www.seiscomp.org/

WebDC3 Web Interface Documentation, Release 1.0.3

General options

• Mail server details. WebDC3 sends e-mail to the address given in the Arclink request confirming that the request
has been submitted. FIXME

• Temporary files. WebDC3 creates files in Python’s default temporary directory. This is typically /tmp. This
location cannot yet be overridden in webinterface, but you may be able to change it by setting TMPDIR in
WebDC3’s environment.

Metadata options

• [list of sensor types VBB, BB, OBS etc] to be displayed in the Stations/Streams tool.

• Arclink nodes configuration file: this is an XML file [or a URL?]. This option enables you to give a list of
Arclink servers which can be checked for status of requests. Generally this list should be those servers which
are included in the routing table provided by your Arclink server. For an EIDA node, this should be the EIDA
master table.

Events options

• Event Search Control options:

js.events.magnitudes.minimum = 3.0
js.events.depth.minimum = 0
js.events.depth.maximum = 1000
js.events.coordinates.north = 90
js.events.coordinates.south = -90
js.events.coordinates.west = -180
js.events.coordinates.east = 180

• Event service configuration options:

event.[list of services]
event.names.lookupIfEmpty = True
event.names.lookupIfGiven = False

4.8 Customisation

You may safely modify the following to suit your web site needs:

• webinterface.cfg - this was described above. (Location: where SeisComP looks for configuration files.)

• index.html template document. The template must do the following:

– Make sure jquery gets loaded e.g.:

<script src="tools/jquery/jquery-1.9.1.js"></script>
<link rel="stylesheet" href="css/smoothness/jquery-ui.css" />
<link rel="stylesheet" href="css/smoothness/jquery.ui.theme.css" />
<script src="tools/jquery/jquery-ui.js"></script>
<script src="tools/jquery/jquery.cookie.js"></script>

– Make sure OpenLayers gets loaded:

<script src="tools/openlayers/OpenLayers.js"></script>

4.8. Customisation 19

WebDC3 Web Interface Documentation, Release 1.0.3

– Load the JavaScript loader:

<script src="loadme.js" type="text/javascript"></script>

The template should contain “<div>” elements for the JavaScript controls. They should be left empty in the
template because their content will be filled by the controls running in the client’s brower. The following
controls are available:

<div id="wi-Console" class="consoleframe"></div>
<div id="wi-StatusListControl" class="frame"></div>
<div id="wi-StatusQueryControl" class="frame"></div>
<div id="wi-StatusFullControl" class="statusframe"></div>
<div id="wi-EventSearchControl" class="frame"></div>
<div id="wi-StationSearchControl" class="frame"></div>
<div id="wi-SubmitControl" class="frame"></div>
<div id="wi-MappingControl" class="frame"></div>
<div id="wi-RequestManagerControl" class="frame"></div>

• css/sample.css - Cascading Style Sheet file.

4.9 Maintenance

There may be some temporary files to clean up from time to time. These should be in Python’s default temporary
directory e.g. /tmp.

Metadata may need updating after changes in Arclink inventory - you can safely run the update-metadata.sh
script at any time to do that. Webinterface creates a processed version of the Arclink XML, but this will be automati-
cally updated each time webinterface notices a new inventory XML file.

20 Chapter 4. Operator Instructions

CHAPTER

FIVE

DEVELOPER NOTES

5.1 Principles

We use JavaScript-based Dynamic HTML, together with the Python Web Server Gateway Interface (WSGI; PEP 333)
for thin web services. Our approach is based on “dynamic HTML”, in which JavaScript is used to modify objects in
the Document Object Model (DOM) of the page displayed in the browser.

There is a modular decomposition into functions related to presentation, events, services, maps, configuration, and
data requests from the Arclink server.

• Coding

We try to comply with PEP 8 Style Guide for Python Code and PEP 257 Docstring Conventions, and use the
Python unittest unit testing framework where convenient.

For JavaScript... anything goes? There is a helper class to control access to the Python modules.

• Documentation

This documentation is written in a simple mark-up format called reStructuredText
<http://docutils.sourceforge.net/rst.html> (reST). The final documentation is generated us-
ing Sphinx. Our philosophy follows the SeisComP documentation, described at
http://www.seiscomp3.org/doc/seattle/2013.149/base/contributing-docs.html Look in the descriptions sub-
directory for configuration options etc. relating to particular modules e.g. wsgi/descriptions .

5.2 Interfaces and name spaces

The communication between JavaScript and Python uses HTTP over a web services-like interface. The Python-based
web services can run on any port on localhost (not on a different server, due to browser/JavaScript restrictions against
cross-site scripting (XSS) attacks.)

The URL specification for services is divided into major subgroups. They are:

<wsgi root>/ ## Interface information service / Page generation
<wsgi root>/event ## Event-related stuff
<wsgi root>/metadata ## Metadata-related stuff
<wsgi root>/request ## Request submission and status stuff

The real services offered by the server are accommodated into one of these subgroups.

Top level specification, major groups:

21

http://www.python.org/dev/peps/pep-0333
http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0257
http://docutils.sourceforge.net/rst.html
http://www.seiscomp3.org/doc/seattle/2013.149/base/contributing-docs.html

WebDC3 Web Interface Documentation, Release 1.0.3

<wsgi root>/ ## Interface information service / Page generation
<wsgi root>/event ## Event related stuff
<wsgi root>/metadata ## Metadata related stuff
<wsgi root>/request ## Request submission and status stuff

5.2.1 Application level

<wsgi root>/configuration ## Get configuration
Parameters: None
Response: JSON structure

<wsgi root>/loader ## JavaScript code to load the interface
Parameters: None
Response: JavaScript method

5.2.2 Event level

<wsgi root>/event/catalogs ## List of catalogs available
Parameters: None
Response: JSON - a list of catalogs and the features they offer

<wsgi root>/event/<catalog><?parameters> ## Events query for preparing request
Parameters: start={datetimestring}

end={datetimestring}
minlat={float}
maxlat={float}
minlon={float}
maxlon={float}
minmag={float}
maxmag={float}
mindepth={float}
maxdepth={float}
limit={int}
format={string}

Response: JSON, CSV, raw, or text lists of events

<wsgi root>/event/parse<?parameters> ## Parse a user-supplied catalog.
Parameters: informat={string} ## The INPUT format. So far CSV, later can be QML, GeoJSON

columns={string} ## Comma-separated list of columns
in the supplied CSV file, from:

(’latitude’, ’longitude’, ’depth’, ’time’, ’ignore’)
input=<user supplied catalog sent as POST>
format={string} ## The OUTPUT format.

Response: JSON, CSV - a list of events.

5.2.3 Metadata level

<wsgi root>/metadata/networktypes ## List of network types
Parameters: None
Response: JSON - a list of network types that the system knows.

Every row contains two columns: ID and DESCRIPTION.

22 Chapter 5. Developer Notes

WebDC3 Web Interface Documentation, Release 1.0.3

<wsgi root>/metadata/sensortypes ## List of sensor types
Parameters: None
Response: JSON - a list of sensor types that the system knows.

Every row contains two columns: ID and DESCRIPTION.

<wsgi root>/metadata/networks<?parameters> ## List of networks for menus
Parameters: start={int}

end={int}
[networktype={string}]

Response: JSON - list of networks after filtering based on the parameters.
Every row contains two columns: ID and DESCRIPTION. The ID is a
combination of network code and start/end year.

<wsgi root>/metadata/stations<?parameters> ## List of stations for menus
Parameters:

start={int}
end={int}
networktype={string}
[network={string}]

Response: JSON - list of stations after filtering based on the parameters.
Every row contains two columns: ID and DESCRIPTION. The ID is a
combination of network code, start/end year of the networks and
the station code.
If the optional network parameter is passed, networktype is not
used and the time to return the information is improved.

<wsgi root>/metadata/streams<?parameters> ## List of streams for menus
Parameters:

start={int}
end={int}
networktype={string}
[network={string}]
[station={string}]

Response: JSON - list of streams after filtering based on the parameters.
Every row contains only one column: DESCRIPTION. The DESCRIPTION
is only the first two letters of the stream code.
For example, ’BH’.
If the optional network and/or station parameters are passed, the
time to return the information is improved.

<wsgi root>/metadata/query<?parameters> ## Metadata query for preparing
request

Parameters: start={int}
end={int}
[network={string}]
[networktype={string}]
[streams={list of streams}] ## two-char codes separated by commas
[station={string}] || ## selection "by Code"
[minlat={float} ## selection "by Region"
maxlat={float}
minlon={float}
maxlon={float}] ||

[minradius={float} ## selection "by Event"
maxradius={float} ## Radius and azimuth are

5.2. Interfaces and name spaces 23

WebDC3 Web Interface Documentation, Release 1.0.3

minazimuth={float} ## relative to event location(s)
maxazimuth={float}
events=<event data sent as POST>]

sensortype={string}
preferredsps={float}

Response: JSON list [key table, attribute list]
Keys are (network code, network starting year, station code,

station starting DATE)
Attributes are {’netcode’, ’statcode’, ’latitude’, ’longitude’,

’restricted’, ’netclass’, ’archive’,
’netoperator’, ’streams’ e.g. ["BH","HH","LN"]}

NOTE: Coordinates for region-based constraints are taken from <station>-level attributes in inventory. This is not
perfect (they are stream-level attributes), but is simple and adequate.

<wsgi root>/metadata/phases ## List the phases supported by the timewindows method.
Parameters: None
Response: JSON - a list of phases that the system knows.

Every row contains two columns: ID and DESCRIPTION.

<wsgi root>/metadata/export<?parameters> ## Downloads a CSV file with the selected streams
Parameters: streams={data} # JSON [list of [net, sta, chan, loc]]
Response: CSV - a list of streams that are currently selected in the stations list.

<wsgi root>/metadata/timewindows<?parameters> ## Prepare time window for each (event, stream)
Parameters: streams={data} # JSON [list of [net, sta, chan, loc]]

[start={time}
end={time}] ||

[events={data} # JSON [list of [lan, lon, depth, time]]
startphase={string}
startoffset={int}
endphase={string}
endoffset={int}]

Response: JSON object, suitable to be passed as "timewindows" to /request/submit

5.2.4 Request level

(Magic free, all parameters are mandatory unless it is explicitly stated that they are optional.)

<wsgi root>/request/types ## List of possible request types
Parameters: (none)
Response: JSON [list of [requesttype, description]]

<wsgi root>/request/nodes ## List of nodes from network XML
Parameters: (none)
Response: JSON [list of [DCID, name]]

<wsgi root>/request/submit<?parameters> ## Submit one request
Parameters: user={string}

requesttype={string}
compressed=<boolean>
responsedictionary=<boolean>
timewindows=<data> ## JSON list of time windows
eventinfo=<data> ## Event info, e.g. for SEED headers.

24 Chapter 5. Developer Notes

WebDC3 Web Interface Documentation, Release 1.0.3

JSON dict: [latitude, longitude, depth, description, ...]
(Not currently used.)

[server={DCID}]

Response: JSON dict {"uuid": "<uuid>",
"success": [list of successfully routed requests],
"failure": [list of requests that could not be routed]}

Time windows structure example (might use Arclink time format instead of ISO):

[
[

"2013-07-01T12:00:00.0000Z",
"2013-07-01T12:10:00.0000Z",
"RO",
"MLR",
"BHZ",
"",
1024 # estimated size

],
[

"2023-07-01T12:00:00.0000Z",
"2023-07-01T12:10:00.0000Z",
"RO",
"MLR",
"BHZ",
"",
1024 # estimated size

]
]

<wsgi root>/request/download?{parameters} ## Get the data!
Parameters: request={int} ## Arclink Request id number

user={string} ## Valid e-mail address
server={string} ## Arclink network DCID
[volume={string}]## Optional volume to download

Response: (data: seed, mseed, dseed, inv-xml, routing-xml, ...?)

<wsgi root>/request/status<?parameters> ## Check status of one user request
at a server.

Parameters: user={string}
server={string}
[request={int}] ## OPTIONAL, if omitted: all request ids for

that user and server should be returned
Response: JSON list of objects generated from Arclink status XML file for each request

<wsgi root>/request/resubmit<?parameters>
Parameters: user={string}

uuid={request UUID}
mode={reroute|retry|resend}
idlist ## JSON [list of [server, request]]
[server=DCID] ## if omitted, use DEFAULT_SERVER

Modes: reroute: try to send NODATA/RETRY lines to next server;
retry: try to send NODATA lines to next server,

retry RETRY lines on the same server;
resend: resend the whole request under a new UUID.

5.2. Interfaces and name spaces 25

WebDC3 Web Interface Documentation, Release 1.0.3

Response: JSON dict, same as /submit

<wsgi root>/request/purge{?parameters} ## Delete one user request
at a given server.

Parameters: user={string} ## User is an e-mail address
server={string} ## Arclink network DCID
request={int}

Response: true (or HTTP error)

As for FDSN web services, {datetimestring} is always an ISO-style date-time string, e.g.
2010-01-01T12:34:56. Note that there is a ‘T’ between date and time and there is no time zone indica-
tion. All times are UTC.

5.3 Modules

1. Presentation module

2. Events module

3. Station metadata module

4. Maps module

5. Data requests module

6. Configuration

5.3.1 Presentation module

There is a ‘debug’ option for the JavaScript.

Styles for objects within the control divs is provided in wimodule.css. These are prefixed with “wi-”. Generally they
do not alter colours or fonts - those should be controlled by a “theme”-specific style sheet included by the top-level
page (e.g. index.html includes css/basic.css).

Some things are set in the JavaScript e.g. monospace font for pull-down menus.

In particular lots of alignment decisions - padding, margins, text alignment are made in the JavaScript - but they should
not require modification.

5.3.2 Events module

Each target event service requires a URL at which we can obtain CSV output.

One difficult choice concerns interpretation of end dates and the time (instant) that they refer to.

Several existing catalogs understand an end date as the last day on which an event should be returned - GEOFON’s
datemax and EMSC’s end_date parameters are like this. Others specify a time, e.g. ComCat requires milliseconds
since 1970. A box giving start and end dates on a web interface needs to convert its end date to the last acceptable
time, or the end of the end date. For events in June 2013, users should enter 2013-06-30 in an “ending date” box, but
this means that the end parameter value required is 2013-07-01T00:00:00. Following the FDSN web services
specification, this date-time may be abbreviated to end=2013-07-01 i.e. the start of the next day.

We were faced with two unpalatable choices:

26 Chapter 5. Developer Notes

WebDC3 Web Interface Documentation, Release 1.0.3

• Allow end=YYYY-MM-01 to mean the end of the first day of a month. Then it could be passed through to those
target services which cut off at the end of the given date. However the Python web service we built to wrap multi-
ple event services would be flawed in that it did not itself offer FDSN-style date support. Meanwhile interactions
with new target services using the FDSN convention would have to compute end=YYYY-MM-02T00:00:00.

• Bite the bullet now, and have the Python web service present an FDSN-style interface. Then the JavaScript in
the client must prepare an “end={value}” string for sending to the Python, and this must be converted to the
older convention for older target services. These two conversions, one in JavaScript, one in Python, increase the
possibility of coding errors.

We chose the second option, so that

1. we can support times within days in future (e.g. a search for events between 00:00 and 06:00 on 1 April 2013),
and

2. we stop perpetuating the same problem of being unclear about what an incompletely-specified time like 2013-
04-01 means.

The event service handlers for GEOFON and EMSC now convert a request like:

/event/geofon?end=2013-04-01

into requests for

<http://geofon.gfz-potsdam.de/eqinfo/list.php?datemax=2013-03-31>

<http://www.emsc-csem.org/Earthquake/?filter=yes&end_date=2013-03-31>

Implementing extensions

To build a new event service:

1. Add it to the list of configured event services, so that the front end displays it. For now, selecting this will do
nothing, at best, and probably crash your browser. :-)

For now, add it in _EventsServicesCatalog in the Python (event.py)

2. Add some test cases in test/testEvent.py.

3. In the Python (event.py) file: subclass EventService. You need to provide a handler() method. This function is
expected to:

(a) Builds a query from the parameters it receives.

(b) Query the target service

(c) Process the response to produce a JSON object representing a list of events.

(d) Return this object to the caller.

The EventService class provides several methods to help you do this.

• result_page()

• format_response()

• error_page()

• the process_parameters function.

A simple event service class definition might be:

5.3. Modules 27

http://geofon.gfz-potsdam.de/eqinfo/list.php?datemax=2013-03-31
http://www.emsc-csem.org/Earthquake/?filter=yes&end_date=2013-03-31

WebDC3 Web Interface Documentation, Release 1.0.3

class ESPhlogiston(EventService):
def __init__(self, name):

Accept defaults, or they can be overridden here:
self.csv_dialect = ...
self.column_map = ...
self.filter_table = ...

def handler(self, environ, parameters):
"""Get events from http://quakes.phlogiston.org/ as CSV."""

set paramMap to handle the FDSN-style parameters from the QUERY_STRING
pairs, bad_list, hold_dict = process_parameters(paramMap, parameters)

Build URL ready for submission and make the request
try:
allrows, url = self.send_request(pairs)

except urllib2.URLError:
self.raise_client_400(environ, ’No answer’)

fmt = hold_dict.get(’format’, ’text’)
content = self.format_response(allrows, numrows, limit, fmt)
return self.result_page(environ, start_response, ’200 OK’, ’text/plain’, content)

The ‘parameters’ dictionary contains values for zero or more of the following arguments:

28 Chapter 5. Developer Notes

WebDC3 Web Interface Documentation, Release 1.0.3

Parameter name Allowable values Remarks
start [0-9TZ:-.]*
end [0-9TZ:-.]*
minlat float [+-][0-9.]
maxlat float
minlon float
maxlon float
lat float
lon float
minradius float_pos
maxradius float_pos
mindepth float Negative depth is okay
maxdepth float_pos
minmag float Negative mag is okay
maxmag float_pos
magnitudetype string??? Can we do wild cards? What do

MT solutions have?
preferredonly Ignored for eqinfo
eventid Sure, might be handy
includeallmagnitudes bool NOT supported
includearrivals bool NOT supported
limit
offset • Not in eqinfo

orderby • could be

contributor • Not in eqinfo

catalog • ignored

updatedafter • Ignored for now (EMSC?)

The values of these parameters (default, type, units etc.) are as set out in the FDSN standard. In particular date-time
strings with no time refer to the start of the day e.g. “end=2000-04-01” implies “2000-04-01T00:00:00.0”, the start of
1 April, not the end of this day.

[Extension: lat and lon may be vectors (values separated by commas). If both have the same number of items, then
each lat-lon pair is checked in turn in searching for matching events. It is an error if the lists are of different length, or
if one of lat and lon is not present when the other is.] [The long (unabbreviated) parameter names in Table 1 are not
supported.]

These are passed to getEvents() during an event services request, as arguments to the URL. The similarity to the FDSN
‘event’ web service is intentional. 1 Some parameters in the FDSN ‘event’ web service are not relevant to the web
interface at present, or are not implemented in the GEOFON eqinfo service, but it should be okay to include them in
queries.

The columns of the CSV list of events must be in the following order:

1 See Table 1 of “FDSN Web Service Specifications”, Version 1.0, 2013/04/24, accessed 2013-10-10 from
http://www.fdsn.org/webservices/FDSN-WS-Specifications-1.0.pdf . We do not claim to support the entire FDSN-defined service interface.
A major difference between this web service and FDSN’s is that FDSN web services are expected to return parametric data for events as QuakeML
- any text/CSV output is an undocumented extension of the FDSN interface. Furthermore, our services, at this stage, are not available to the general
public, or even necessarily hosts beyond localhost.

5.3. Modules 29

http://www.fdsn.org/webservices/FDSN-WS-Specifications-1.0.pdf

WebDC3 Web Interface Documentation, Release 1.0.3

Note: Put this table elsewhere.

Table: Existing/Proposed/to be implemented event services:

Service Name Status Description
geofon Done GFZ eqinfo service
comcat Done USGS, replaces NEIC
emsc Done EMSC
parse Done Event time, lat/long by hand on web page
iris TODO Text-based
file-txt TODO Text file upload
file-qml TODO QuakeML file upload
fdsn-qml TODO Generic QuakeML-based service
sc3-txt

• geofon: Our GFZ eqinfo service (text services need tuning per supplier).

• EMSC: Old pre-FDSN web service at <http://www.emsc-csem.org/> -have CSV and JSON and
(pre?)QuakeML Base: <http://www.emsc-csem.org/Earthquake/?filter=yes&export=csv>

• NEIC: reserved for old service at <http://neic.usgs.gov/> Base: <http://neic.usgs.gov/cgi-
bin/epic/epic.cgi?> + SEARCHMETHOD=1&FILEFORMAT=6&SEARCHRANGE=HH {params}
&SUBMIT=Submit+Search

• sc3fdsnws-txt: Talk to a SC3 implementation of FDSN web services, using fmt=txt option.

• fdsnws-qml:

Talk to a generic implementor of FDSN web services, using QuakeML.
{baseUrl}/fdsnws/event/1/query? {params} &format=&nodata=

The following table shows how some non-standard services are implemented:

Table: Event service mappings

30 Chapter 5. Developer Notes

http://www.emsc-csem.org/
http://www.emsc-csem.org/Earthquake/?filter=yes&export=csv
http://neic.usgs.gov/
http://neic.usgs.gov/cgi-bin/epic/epic.cgi
http://neic.usgs.gov/cgi-bin/epic/epic.cgi

WebDC3 Web Interface Documentation, Release 1.0.3

FDSN Standard GFZ eqinfo EMSC NEIC (old)[2]
start start start_date SYEAR,SMONTH,SDAY
end end end_date[*] EYEAR,EMONTH,EDAY
minlat latmin min_lat -unavailable
maxlat latmax max_lat
minlon lonmin min_long SLON1 ?
maxlon lonmax max_long SLON2 ?
lat -unavailable -unavailable CLAT
lon -unavailable -unavailable CLON
minradius -unavailable -unavailable
maxradius -unavailable -unavailable
mindepth -drop[1] min_depth NDEP1=0
maxdepth -drop max_depth NDEP2=depth
minmag magmin min_mag LMAG ?
maxmag -unavailable[3] max_mag UMAG=9.9 ?

• min_intens

• max_intens

• region

magnitudetype -unavailable
preferredonly -unavailable
eventid “” -unavailable
includeallmagnitudes -unavailable -unavailable
includearrivals -unavailable -unavailable
limit nmax “”
offset -unavailable “”
orderby -unavailable -unavailable
contributor “”
catalog “”
updatedafter -unavailable “” [1]

• “-unavailable” : submission with this parameter would be ignored, result in
bad/misleading results, is an error, don’t submit.

• “” : harmless, pass this parameter on to target, but it won’t be processed by it.

Note 1: ‘updatedafter’ is an attribute present in EMSC output, but is not constrainable in query
parameters. ‘depth’ is present in eqinfo output, but is not constrainable.

Note 2: Looks like NEIC had no geographical constraints, hence filterEventsFromNEIC did it
in the old js/query.js.

Note 3: We added magmax to the eqinfo service to implement this (July 2013).

3. Implement the functionality

You may need to rename arguments passed to, and reorder outputs etc. received from your target service. This wrapper
function achieves that. Regarding output, see below.

If you encounter an error while querying your target service, simply return an empty string. The getEvent function
calling yours will see this response and generate a “204 No Content” response, and the web interface will report to the
user that no events were available for the selected event catalogue and parameters.

4. Add an instance of the new class in getEvents() in events.py.

5.3. Modules 31

WebDC3 Web Interface Documentation, Release 1.0.3

#. Add one or more test functions for your function in the TestEventServices class (test/testEvents.py), run the unit
tests and start the service stand-alone:

cd test
python testEvents.py
python testMetadata.py
python manage.py

You can now try the service, by visiting <http://localhost:{port}/event/{service}?{params}>

1. Add a new option to generate a different <div> e.g. a file upload box, or a picker for single event!

2. Restart WSGI on the server, refresh or close your browser to reload JavaScript.

3. Check that the new module works as expected. Debugging info goes to Apache’s logging (typically
/var/log/apache2/error_log) and SeisComP’s logging (which may be in ~/seiscomp3/var/log, depending on your
configuration.)

Event service output

The event service JSON output must have the structure of a table with one row per event. The columns in each row
are:

Position Quantity Type Remarks
0 Event Time datetime Rounded to seconds!
1 Magnitude float/str “–” if not in input
2 Latitude float
3 Longitude float
4 Depth float/str “–” if not in input
5 Event ID string Used by JavaScript
6 Region string Can be filled if missing

Rounding event times to the closest second might have consequences if users expected waveforms to be very carefully
aligned.

5.3.3 Station metadata module

The information related to the inventory is first retrieved and updated from an Arclink server by means of a script
(data/update-metadata.sh) installed in a crontab. The update interval can be configured according to the needs of the
operator. As this information is does not change frequently over time, an update interval of 24 hours is the suggested
value.

This information is saved to a file on the server (data/Arclink-inventory.xml) and will be read from this file if necessary.
The parsing of the file and the creation of the internal representation can take up from 5 to 9 seconds, depending on
the hardware. To improve performance, once the information is stored in memory, a dump of all these variables are
saved in a temporary file. If other threads of the server are started, the timestamp of the original information and the
memory dump is checked and the newer is loaded. In this way, the system does not need to establish a connection
with the Arclink server while consulting the metadata, making operations much faster than in the previous version of
the system.

The internal representation of the metadata consists of four lists representing networks, stations, sensor locations and
streams. All the lists contain tuples and every tuple represents one instance of the related information (e.g. one
network). The structure of these tuples is described below.

Network:

32 Chapter 5. Developer Notes

http://localhost

WebDC3 Web Interface Documentation, Release 1.0.3

Po-
si-
tion

Vari-
able

Type Remarks

0 Code string
1 First

station
int Pointer to the first station of the network. If it is a virtual network, this

should be None.
2 Last

station
int Pointer to the last station of the network (exclusive; to be used with the

function range). If it is a virtual network, this should be None.
3 Sta-

tions
list Station pointers in case of a virtual network.

4 Start
year

int Start year of operation.

5 End
year

int End year of operation.

6 De-
scrip-
tion

string

7 Re-
stricted

booleanTrue if the network has restricted data.

8 Class char ‘p’ for permanent and ‘t’ for temporary.
9 Archive string Archiving node, ‘GFZ’, ‘RESIF’, ‘INGV’, etc.
10 Insti-

tu-
tions

string Network operators.

Station:

Posi-
tion

Variable Type Remarks

0 Network int Pointer to the containing network.
1 First

sensor
int Pointer to the first sensor of the station.

2 Last
sensor

int Pointer to the last sensor of the station. (exclusive; can be used
with range).

3 Reserved None-
Type

4 Code string Station code.
5 Latitude float
6 Longi-

tude
float

7 Descrip-
tion

string

8 Start date datetime Start date and time of operation.
9 End date datetime End date and time of operation.
10 Elevation float

Sensor Location:

5.3. Modules 33

WebDC3 Web Interface Documentation, Release 1.0.3

Posi-
tion

Variable Type Remarks

0 Station int Pointer to the belonging station.
1 First

stream
int Pointer to the first stream of the sensor.

2 Last
stream

int Pointer to the last stream of the sensor. (exclusive; can be used
with range).

3 Reserved None-
Type

4 Code string Sensor code.

Stream:

Position Variable Type Remarks
0 Sensor int Pointer to the belonging sensor.
1 Code string Stream code.
2 Sensor type string
3 Sample denom. float
4 Sample numer. float
5 Datalogger string
6 Start date datetime Start date and time of operation.
7 End date datetime End date and time of operation.

5.3.4 Maps module

Uses OpenLayers.

The icons supplied for station and event markers are 13x13 PNG images, with an alpha channel. They were produced
using Inkscape.

5.3.5 Data requests module

This part communicates with the Arclink server. It can break large requests into chunks and handle splitting requests
between servers.

FIXME: Andres, does “reroute” work down the routing table in priority order, or something else?

5.4 Configuration

webinterface.cfg is processed using SeisComP configuration code. It is read in by ...XXX. Configuration values can
be obtained in the Python code by ... XXXX.

34 Chapter 5. Developer Notes

CHAPTER

SIX

CHANGE HISTORY

6.1 Initial revision

Compared to the old web interface, developed until 2012, there are many internal and external differences.

• Site customisation: There’s no more html_chunks.py! Instead just create index.html containing the hooks you
need. See Customisation.

• Modular support for multiple event catalogs.

– The old NEIC service has been removed, and replaced by USGS’s Comcat service.

– EMSC’s service has been added.

– You can upload events from a custom CSV catalog.

• Stations/metadata:

– Webinterface caches inventory data from its base Arclink server. This saves many Arclink requests and
gives much better performance. The update-metadata.sh script is provided as a tool for refreshing locally
downloaded data.

– There is better display of what streams are available for a particular set of stations.

– Selection based on sample rate closest to a specific value is possible.

• Request handling:

– Request status is displayed for all data centres which were involved in handling a request.

– Routing/retrying/refreshing.

• This documentation exists.

6.2 v0.3 (2013-10-11)

• js - event services URL can have a limit. Quick M>=6 feature. Extra help comments. Different event symbols.

• For events and stations, ‘Search’ -> ‘Search/Append’

• For events and stations, items which are unselected remain visible on the map.

• Add ‘restricted’ column on station table.

• Request metadata/streams by POST not GET.

• Warning on too many unpurged requests at the data centre.

35

WebDC3 Web Interface Documentation, Release 1.0.3

• Swap “Time Window selection” and “Request information” on submit tool.

• Added ‘type=”text/javascript”’ to <script> elements in HTML documents.

• Documentation: Many small improvements and updates.

Note: The WebDC3 software is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version. For more information, see http://www.gnu.org/

36 Chapter 6. Change History

http://www.gnu.org/

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

37

WebDC3 Web Interface Documentation, Release 1.0.3

38 Chapter 7. Indices and tables

APPENDIX

A

SELF-STUDY TUTORIAL

Peter L. Evans, GEOFON team pevans@gfz-potsdam.de

A.1 Introduction

The GEOFON WebDC3 web interface is a new and powerful web-based tool to explore earthquake event catalogs,
browse seismic stations, and extract seismic waveforms and station metadata from the EIDA archive system. It extends
the old WebDC service in several interesting ways.

This document is intended to be a self-study guide to performing a few common tasks with the web interface tool, and
demonstrating the new features. It is task-driven: you will be asked to find a few sets of data, and guided through the
way where necessary. The whole set of tasks shouldn’t take more than half an hour (it takes me a few minutes to click
here and there, but then I wrote this document, and helped develop the software.)

Each task below is focussed on extracting some specific information from the system. There is a question for each
one. Answers are at the back. No peeking! If you encounter problems along the way, it may be because the interface
is unclear, the documentation in the User Guide is incomplete, or there are bugs in the software. Please let us know
about your experience. You can send e-mail to geofon@gfz-potsdam.de, or contact me at the address above.

If you’re stuck, note the on-line help available as pop-ups (or whatever). Also you can click on the link in the top right
corner of the page.

To start, open your web browser on to the web interface start page, either at [http://eida.gfz-potsdam.de/webdc3] or at
your local site.

A.2 Event browsing

Q: In July 2013, how many big earthquakes were there, worldwide?

Click on the “Explore events” tab at the top of the page. You will see a box titled “Events Controls”. Use this to make
a selection of events in the GFZ event catalog. Press “Search” when you are ready. You should see a list of events and
they are displayed on the map.

1. How many had magnitude >=6?

2. How many had magnitude >=5.5?

3. (Harder) How many of these are also in the EMSC and USGS seismic catalogs?

Clear your selection of events (click “Delete Events”). Now we’ll ask a more specific question:

4. How many events are recorded near Tonga (Nukualofa, 21 degrees S latitude, 175 degrees W longitude, within
say 5 degrees) with M>4? Of these, how many have depth between 100 and 400 km?

39

mailto:pevans@gfz-potsdam.de
mailto:geofon@gfz-potsdam.de
http://eida.gfz-potsdam.de/webdc3

WebDC3 Web Interface Documentation, Release 1.0.3

A.3 Station browsing

Q: How many stations are there in the GEOFON seismic network?

Click on the “Explore stations” tab to expand the “Stations Controls” box.

1. How many stations were in the GEOFON network (network code “GE”) in 2013? According to inventory, how
many of these had BH stream data:

(a) Based on channel codes? [Use “by Code”.]

(b) Based on sample rate close to 20 sps? Is there a difference? (Hint: see the help page.)

2. How many of these stations have STS-2 instruments? This one can’t be done with our first version.

3. Press the “Reset” button in the Station Controls. For the network GE station APE (Apirathos, Naxos, Greece),
how many channels are available altogether?

4. How many stations were in the GE network in 2003?

5. [What about something EIDA-wide too? For this you need “All shared networks”.]

A.4 Requesting waveform data

Q: What waveforms do you have for my event?

Reload the page. Request mini-SEED waveform data for all Mediterranean broadband stations (within 4 degrees)
which recorded the M5.0 event in Central Italy on 2013-07-21. Under “Explore Stations”, use the “by Regions”
button to filter stations by region. Restrict your selection to just BH channels.

Use the “Submit request” tab. Request just the vertical component (BHZ) using “Filter” on the station list. Use
“Relative mode” on the “Submit request” tab to set time windows from 1 minute before the expected P wave arrival to
5 minutes after the expected S wave arrival for each station.

Request full SEED waveform data. Click “Review request”. Once your request is sent, use the “Download data” tab
to see how your request is progressing.

• how many streams did you obtain?

• how many time windows, z, are there in your request?

• how many time windows, y, are in your request (use the “Review” button)?

• how many time windows, x, returned data (use the “Status” tab)?

• what is the size of the file you downloaded?

Note that x <= y <= z because:

1. A time window with a P arrival can’t be computed for all stations.

2. We have no data from some stations at the times requested.

A.5 Requesting station metadata

Q: I need to set up my new SeisComP system. How do I get the metadata I need?

One way to do this is via Arclink inventory XML. On the Station Controls, select for years 2011 to 2013. Pick the
GEOFON network (code GE) from the list under “Code”. Under “Submit request”, pick “Metadata (Inventory XML)”
(and “Absolute Mode”).

40 Appendix A. Self-study Tutorial

WebDC3 Web Interface Documentation, Release 1.0.3

Another way is via dataless SEED. Which is smaller?

A.6 Request status and cleaning up

Q: What’s the status of my request? You can also see what requests are pending, i.e. haven’t been completed, and are
available for downloading. Go to the Download data tab.

Click on a line starting “Package...” to see its status. Use the “Refresh” button, and for a big request, you may notice
the number of lines with “Status: PROCESSING” increases, while that with “Status: UNSET” decreases. When
everything is done, you will see “Status: OK” and green text “Download Volume”. Clicking on this text lets you save
the data to your local computer.

A.7 Using catalog upload

Q: But I have my own event catalog! Can I still use the web interface?

On 15 February 2013 a meteor exploded over Chelyabinsk, Russia [http://en.wikipedia.org/wiki/Chelyabinsk_meteor].
What waveform data do you have around this time? A quick look in the GFZ catalog shows we have no event associated
with this meteor. Create a custom event by choosing “User Supplied” in the Event Controls box. Use depth 0 and time
03:20 UTC.

Now download BHZ data for stations within 90 degrees of 55.0 degrees N, 61 degrees E.

[I need a good simple way to view SEED data.]

A.8 Data at different EIDA nodes

Q: Isn’t there more than one EIDA node?

Within the EIDA system, waveform data may be stored at only one participating EIDA node, but it is still available
from the web interface running at GFZ or other nodes. For example seismic network CH is hosted at ETH in Z?rich,
while GE data is here at GFZ. Request BHZ/HHZ waveforms for all stations in [a box from 45 to 55 degrees N, 5 to
15 degrees E - including some German stations.] Note that GEOFON station GE.RUE, XXX and XXX are included
- data for these is stored at GFZ Potsdam and BGR Hannover/LMU Munich respectively. As a time window, take the
first 15 minutes of April 1, 2013. How many streams are in your request?

Note that your request is broken into volumes and sent to each node. You can see the status of each one using the
Download data tab.

A.9 Direction-based searches

Find all stations to the north (i.e. azimuth between 330 and 30, distance less than 120 degrees) of any South American
event with M>6.0 between January 1 and March 31 of 2013.

You must first select the events, from the Explore events tab. Then use the “Explore Stations tab to go to the
Stations Controls. Select “by Events” and the desired event distance and azimuth.

A.6. Request status and cleaning up 41

http://en.wikipedia.org/wiki/Chelyabinsk_meteor

WebDC3 Web Interface Documentation, Release 1.0.3

A.10 Last words

Finally, clean up your requests, after downloading them. (From Download data, put your e-mail address in the
Manage Requests box, and click “Get Status”, to see all your requests at all EIDA nodes. Now you can delete them all
when you are ready.)

Thank you for working through this document. Here are the final questions:

1. How long did it take you to work through these tasks?

2. How can we improve the web interface?

3. Can you give us an example of a request you would often like to make, but can’t today?

The answers to these questions are not provided below.

A.11 Answers to exercises

Note: The specific event numbers, stream details, file sizes etc. listed here were accurate for the GFZ
web interface at http://eida.gfz-potsdam.de/webdc3 in August 2013. They may have changed by the time
you work through this document.

A.11.1 Event browsing

1. 13 with M>=6.0; there is 1 with M5.9, and 1 with M5.8

2. 33, plus 5 with M5.4; but setting magmin=5.4 gives 39!

3. For M>=6.0 there are also 13 with all catalogs; but differences can occur when the magnitude is close to the
threshold. For M>5.5, EMSC has 40 events, while USGS has 33.

4. 15, and 2 (at 2013-07-24T03:32:33Z and 2013-07-30T03:00:32Z).

A.11.2 Station browsing

1. In 2013: 75 stations; but this may increase during the year. [There might be a difference between
these two ways of selection.]

3. 5 x 3 components = 15 channels.

4. In 2003 there were 52 stations.

A.11.3 Requesting waveform data

The event in question has latitude 43.56N, longitude 13.76E. I found 333 stations in inventory, from at least 12 different
networks, within 4 degrees. For BH streams, there are 189 stations.

There are hundreds of stations you could use for this. Out of my selection of 189 stations, filtering down to BHZ built
a request with y = 185 traces, with one time window per station.

(Since much of the data is at INGV, not GFZ, there may sometimes be routing problems in fulfilling your request.)

42 Appendix A. Self-study Tutorial

http://eida.gfz-potsdam.de/webdc3

WebDC3 Web Interface Documentation, Release 1.0.3

A.11.4 Requesting station metadata

For GE metadata for 2011-2013, my inventory XML file was 760 kB for 1383 streams in 75 stations. The correspond-
ing dataless SEED file was about 512 kB.

A.11.5 Direction-based searches

Use longitude 85W to 25W, latitude 60S to 15N; there are only 2 events. I found over 130 matching stations, from
networks 5E, CN, CX, DK (Greenland), G, GE and others.

A.11. Answers to exercises 43

WebDC3 Web Interface Documentation, Release 1.0.3

44 Appendix A. Self-study Tutorial

INDEX

A
arclink.address

configuration value, 9
arclink.timeout.download

configuration value, 10
arclink.timeout.networkXML

configuration value, 10
arclink.timeout.request

configuration value, 9
arclink.timeout.status

configuration value, 10

C
configuration value

arclink.address, 9
arclink.timeout.download, 10
arclink.timeout.networkXML, 10
arclink.timeout.request, 9
arclink.timeout.status, 10
event.catalogs.ids, 10
event.catalogs.preferred, 10
event.catalogs.registeredOnly, 10
event.defaultLimit, 10
event.names.lookupIfEmpty, 10
event.names.lookupIfGiven, 10
event.service.baseURL, 11
event.service.description, 11
event.service.extraParams, 11
event.verbosity, 10
js.events.coordinates_east, 12
js.events.coordinates_north, 12
js.events.coordinates_south, 12
js.events.coordinates_west, 12
js.events.date_startoffset, 11
js.events.depth_maximum, 12
js.events.depth_minimum, 12
js.events.magnitudes_minimum, 11
js.google.layer, 11
js.maptype, 11
js.wms.layer, 11
js.wms.server, 11

E
event.catalogs.ids

configuration value, 10
event.catalogs.preferred

configuration value, 10
event.catalogs.registeredOnly

configuration value, 10
event.defaultLimit

configuration value, 10
event.names.lookupIfEmpty

configuration value, 10
event.names.lookupIfGiven

configuration value, 10
event.service.baseURL

configuration value, 11
event.service.description

configuration value, 11
event.service.extraParams

configuration value, 11
event.verbosity

configuration value, 10

J
js.events.coordinates_east

configuration value, 12
js.events.coordinates_north

configuration value, 12
js.events.coordinates_south

configuration value, 12
js.events.coordinates_west

configuration value, 12
js.events.date_startoffset

configuration value, 11
js.events.depth_maximum

configuration value, 12
js.events.depth_minimum

configuration value, 12
js.events.magnitudes_minimum

configuration value, 11
js.google.layer

configuration value, 11

45

WebDC3 Web Interface Documentation, Release 1.0.3

js.maptype
configuration value, 11

js.wms.layer
configuration value, 11

js.wms.server
configuration value, 11

P
Python Enhancement Proposals

PEP 257, 21
PEP 333, 21
PEP 8, 21

46 Index

	The WebDC3 web interface generator
	User Guide
	Introduction
	Getting started
	Event-based search
	Stations/channels search
	Request types
	Making a request
	Status/download
	Limitations

	Modules
	Arclink

	Operator Instructions
	WebDC3 web interface generator
	Python and JavaScript (JS)
	Basic Page Set
	The Loader
	Requirements
	Download
	Installation on Apache
	Customisation
	Maintenance

	Developer Notes
	Principles
	Interfaces and name spaces
	Modules
	Configuration

	Change History
	Initial revision
	v0.3 (2013-10-11)

	Indices and tables
	Self-study Tutorial
	Introduction
	Event browsing
	Station browsing
	Requesting waveform data
	Requesting station metadata
	Request status and cleaning up
	Using catalog upload
	Data at different EIDA nodes
	Direction-based searches
	Last words
	Answers to exercises

	Index

