ZE 2012-2014

authors:Frederik Tilmann (GFZ German Research Centre for Geosciences, Potsdam), Xiaohui Yuan (GFZ German Research Centre for Geosciences, Potsdam), Georg Rümpker (Goethe-Universität Frankfurt), Elisa Rindraharisaona (Institute and Observatory of Geophysics in Antananarivo - IOGA, GFZ German Research Centre for Geosciences)
abstract:The island of Madagascar occupies a key region in both the assembly and the multi-stage breakup of Gondwanaland, itself part of the super-continent Pangaea. Madagascar consists of an amalgamation of continental material with the oldest rocks being of Archaean age. Its ancient fabric is characterised by several shear zones, some of them running oblique to the N-S trend, in particular in the south of the island. More recently during the Neogene, moderate volcanism has occurred in the Central and Northern part of the island, and there are indications of uplift throughout Eastern Madagascar over the last 10 Ma. Although Madagascar is now located within the interior of the African plate and far away from major plate boundaries (>1000 km from the East African rift system and even further from the Central and South-West Indian Ridges), its seismic activity indicates that some deformation is taking place, and present-day kinematic models based on geodetic data and earthquake moment tensors in the global catalogues identify a diffuse N-S-oriented minor boundary separating two microplates, which appears to pass through Madagascar. In spite of the presence of Archaean and Proterozoic rocks continent-wide scale studies indicate a thin lithosphere (<120 km) throughout Madagascar, but are based on sparse data and cannot resolve the difference between eastern and western Madagascar. We have operated an ENE-WSW oriented linear array of 25 broadband stations in southern Madagascar, extending from coast to coast and sampling the sedimentary basins in the west as well as the metamorphic rocks in the East, cutting geological boundaries seen at the surface at high angle. The array crosses the prominent Bongolava-Ranotsara shear zone which is thought to have been formed during Gondwanaland assembly. The array recorded the magnitude 5.3 earthquake of January 25, 2013 which occurred just off its western edge. In addition, in May 2013 we have deployed 25 short period sensors in the eastern part of the study area, where there is some so-far poorly characterised seismicity.
citations:

Recommended citation for the data report:

Tilmann, F., Yuan, X., Rümpker, G., & Rindraharisaona, E. (2017). ZE 2012-2014: SELASOMA Project, Madagascar 2012-2014. Scientific Technical Report STR - Data; 17/06. GFZ German Research Centre for Geosciences. https://doi.org/10.2312/gfz.b103-17061

If you use the dataset described in this report, please use the following citation:

Tilmann, F., Yuan, X., Rümpker, G., & Rindraharisaona, E. (n.d.). SELASOMA Project, Madagascar 2012-2014. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/mr7567431421

The raw unprocessed data from cube data loggers and logfiles from EDL stations are archived as assembled dataset and should be cited as:

Tilmann, F., Yuan, X., Rümpker, G., & Rindraharisaona, E. (2017). Supplementary data for SELASOMA Project, Madagascar 2012-2014 - Datasets [Data set]. GFZ Data Services. https://doi.org/10.5880/gipp.201204.1

Data Acquisition

Experimental Design and instrumentation

The station distribution is shown in Fig. 1 and Table 1 summarises the most important information about each station.

Three different types of instruments were used in this experiment. The main profile had a nominal average station spacing of 17 km and was equipped EDL dataloggers and mostly CMG-3ESPs sensors. A few Trillium 240s were approximately equally spaced throughout the array. The power to these stations was supplied by solar panels. The permanent GEOFON station VOI forms an integral part of the array, and no temporary station was deployed in the immediate neighbourhood.

The areal array comprises Cube data loggers and Mark L4C 1 Hz sensors. These stations ran off batteries without recharging.

Site Descriptions and Possible Noise Sources

Stations were deployed in rural settings, mostly on the properties of individual land owners, or near school buildings (see e.g. Fig. 2).

Sensor orientation

All stations were oriented along magnetic north. The declination at the location of station MS13 approximately at the centre of the array at the time of deployment (May 11, 2012) was 19° 19’ W, changing by 1’/year in west direction) (Source: http://www.ngdc.noaa.gov/geomag-web/#declination). The azimuth of the nominal North components is thus ~341°. This value is recorded in the station metadata information in the GEOFON database; the variation of the magnetic field through Madagascar has not been taken into account, though, but should be small compared to the random orientation error.

Data Description

Data Completeness

An overview of instrument uptimes is given in Fig. 3. A relatively large amount of data was lost due to vandalism ranging from loss of power because of theft of the solar panels due to complete loss of data loggers. Some data was lost to technical issues, probably related to high humidity at selected station sites. A recurring problem were GPS gaps at a few of the Cube stations.

The security issues made it necessary to relocate some of the stations (MS06 and MS18, MS25 and AM16) and change the sensor type mid-experiment at some others (MS01, MS02, MS03, MS17, MS25).

Data Processing

The Cube data were converted to miniseed format using the c2m code written by Trond Ryberg (http://www.gfz-potsdam.de/en/section/geophysical-deep-sounding/infrastructure/geophysical-instrument-pool-potsdam-gipp/instruments/seismic-pool/recorder-dss-cube/) This code interpolates linearly between the raw data samples in order to ensure an even sampling rate of the output file. It assumes a linear drift between GPS fixes, when GPS reception is temporarily lost.

Noise Estimation

Fig. 7 shows noise probability density functions for all channels.

Timing Accuracy

An overview of the timing accuracy is given for the broadband stations in Fig. 4 - Fig. 6. In spite of a large number of gaps without GPS for station MS09, MS24 and other stations, particularly in 2014, the timing is thought to be correct for this station for standard seismological purposes.

However, based on inspections of the symmetry of the noise-correlation day stacks, the timing for station MS05 was found to be off by 60~s between 02/10/2012 and 05/02/2013, such that the indicated time is delayed with respect to the real time (equivalently seismic traces are apparently shifted to earlier time). Data recorded in the period from 12/07/2012 to 29/09/2012 and from 06/02/2013 to 28/04/2013 only showed noise with no discernible seismic signals or ambient displacement noise. There is no indication in the log files of any problem. Such errant behaviour in the EDL is rare but a known phenomenon (T. Ryberg, pers. comm.). The timing of data in the GEOFON database was corrected for the indicated time period and the bad data removed but it still appears on the noise power density plots for station MS05 (Fig. Fig. 7).

The following short period stations had no GPS at the time of service, and last GPS fix was more than 2 days in the past. The time after the last GPS fix cannot be corrected, and absolute timing information should not be used between the last fix and indicated station service time; expected daily drift is up to ~10 ms/day [RYBERG14]

Station Last fix Service
AM04 2013-05-09 2013-11-02
AM11 2013-10-26 2013-10-31
AM12 2013-10-27 2013-11-01
AM17 2013-10-30 2013-11-05
AM20 2014-01-01 2014-05-15
MS25A 2013-05-10 2013-09-13

The following short period stations had gaps in excess of 20 days, but a linear correction through the gap could be carried out. Timing errors will be largest in the centre of the gap. The values given in the last column represent these expected and maximum ‘largest errors’ based on the statistical distribution of cube sensors during an experiment in Namibia [RYBERG14]. Gaps shorter than 20 days had expected errors of 5 ms and errors never exceeded 20 ms. No data exist on the likely timing errors beyond 40 days. Actual errors encountered in the Madagascar experiment might differ.

[RYBERG14](1, 2) Trond Ryberg. Cube timing errors introduced by long periods without gps reception, 2014. URL http://www.gfz-potsdam.de/fileadmin/gfz/sec22/pdf_doc/GIPP/cube/Cube_timing_errors_no_gps.pdf
Station Start gap End gap Gap days Expected/max (ms)
AM01 2013-11-25 2013-12-28 33 13/36
2014-01-13 2014-05-10 117 unreliable
AM12 2013-11-23 2013-12-18 25 8/27
2014-01-28 2014-02-20 23 7/26
2014-02-20 2014-04-26 65 unreliable
AM16A 2014-01-12 2014-02-11 30 16/40

Data Access

File format and access tools

The data are stored in the GEOFON database, and selected time windows can be requested by EIDA access tools as documented on http://geofon.gfz-potsdam.de/waveform/ . Normally the data are delivered in miniseed format. The current data access possibilities can always be found by resolving the DOI of the dataset.

Availability

The data are embargoed until May 2018.

Acknowledgements

We thank Prof. Gérard Rambolamana (Institute and Observatory of Geophysics in Antananarivo - IOGA) for supporting this initiative and letting us use storage space at the institute and Mirana Rakotoarisoa for various support in particular related to shipping and custom clearance. Andriamiranto Raveloson helped to set up this collaboration and helped with the organisation. Martina Gassenmeier, Michael Gummert, Ben Heit, Miriam Reiss, Felix Schneider, Ingo Wölbern, Rasoanaivo Christo, Rabeatoandro Johnson, and Andrianaivoarisoa Jean Bernardo are thanked for supporting the fieldwork. We also thank landowners in Madagascar for hosting our stations, and the Isalo Ranch lodge for providing intermediate storage space.

The funding for this experiment was provided by the expedition fund of the GFZ. Analysis of the data is funded by the DFG. The data are additionally being used in the context of a DAAD sponsored postdoctoral fellowhip to one of us (E. R.). Most of the instrumentation was provided by the GIPP (Geophysical Instrument Pool Potsdam); the University of Potsdam loaned us solar panels.

Table 1 Station table. Note that start and end times represent the maximum validity of the corresponding configurations, not the actual data availability or time in the field. Azi: Azimuth of north or ‘1’ component.
Label Lat Lon Ele Azi Rate Sensor ID Logger Id Start End Channels
AM01 -21.07725 48.23924 43 341 50 L4-3D 3055 CUBE 725 2013-04-29 2014-12-31 HHZ HHN HHE
AM02 -21.24409 48.34717 11 341 50 L4-3D 1825 CUBE 727 2013-05-08 2014-12-31 HHZ HHN HHE
AM04 -21.18114 47.63818 454 341 50 L4-3D 3053 CUBE 728 2013-05-07 2014-12-31 HHZ HHN HHE
AM05 -21.17286 48.07654 45 341 50 L4-3D 4180 CUBE 625 2013-05-08 2014-12-31 HHZ HHN HHE
AM06 -21.04612 47.20041 1236 341 50 L4-3D 4191 CUBE 622 2013-05-06 2014-12-31 HHZ HHN HHE
AM07 -20.79577 47.17765 1817 341 50 L4-3D 4190 CUBE 620 2013-05-06 2014-12-31 HHZ HHN HHE
AM08 -21.32468 46.93855 1118 341 50 L4-3D 400290 CUBE 732 2013-05-04 2014-12-31 HHZ HHN HHE
AM09 -21.5598 47.51704 402 341 50 L4-3D 400288 CUBE 729 2013-05-06 2014-12-31 HHZ HHN HHE
AM10 -21.58659 47.96592 63 341 50 L4-3D 4182 CUBE 624 2013-05-07 2014-12-31 HHZ HHN HHE
AM11 -21.74314 47.49369 230 341 50 L4-3D 4201 CUBE 730 2013-05-06 2014-12-31 HHZ HHN HHE
AM12 -21.81696 47.87929 32 341 50 L4-3D 4188 CUBE 623 2013-05-07 2014-12-31 HHZ HHN HHE
AM13 -21.61401 46.8444 1010 341 50 L4-3D 4183 CUBE 626 2013-05-04 2014-12-31 HHZ HHN HHE
AM14 -22.52423 46.73701 647 341 50 L4-3D 4195 CUBE 735 2013-05-02 2014-12-31 HHZ HHN HHE
AM15 -22.05455 47.05158 1056 341 50 L4-3D 4200 CUBE 621 2013-05-04 2014-12-31 HHZ HHN HHE
AM16 -21.72623 46.39637 755 341 50 L4-3D 4181 CUBE 733 2013-05-03 2013-11-13 HHZ HHN HHE
AM16A -21.71914 46.37885 733 341 50 L4-3D 4181 CUBE 733 2013-11-14 2014-12-31 HHZ HHN HHE
AM17 -22.16668 46.15255 726 341 50 L4-3D 4199 CUBE 627 2013-05-03 2014-12-31 HHZ HHN HHE
AM18 -22.57065 46.42732 638 341 50 L4-3D 4194 CUBE 734 2013-05-02 2014-12-31 HHZ HHN HHE
AM19 -22.69986 46.14377 1038 341 50 L4-3D 4198 CUBE 628 2013-05-02 2014-12-31 HHZ HHN HHE
AM20 -22.30282 45.68227 1088 341 50 L4-3D 4192 CUBE 736 2013-04-30 2014-12-31 HHZ HHN HHE
AM21 -22.61366 45.39588 800 341 50 L4-3D 4193 CUBE 737 2013-04-29 2014-12-31 HHZ HHN HHE
AM22 -22.64377 45.70106 929 341 50 L4-3D 4185 CUBE 633 2013-04-30 2014-12-31 HHZ HHN HHE
AM23 -22.94958 46.13974 1030 341 50 L4-3D 4196 CUBE 629 2013-05-02 2014-12-31 HHZ HHN HHE
MS01 -23.41386 43.75462 12 341 100 CMG-3ESP/60 GC259 PS6-SC 3222 2012-04-30 2013-04-29 HHZ HHN HHE
MS01 -23.41386 43.75462 12 341 50 L4-3D 4187 CUBE 630 2013-04-29 2014-12-31 HHZ HHN HHE
MS02 -23.34335 43.89449 166 341 50 L4-3D 4186 CUBE 632 2013-04-29 2014-12-31 HHZ HHN HHE
MS02 -23.34335 43.89449 166 341 100 CMG-3ESP/60 GC257 PS6-SC 3221 2012-04-30 2013-04-28 HHZ HHN HHE
MS03 -23.23817 44.02398 326 341 50 L4-3D 4184 CUBE 631 2013-04-29 2014-12-31 HHZ HHN HHE
MS03 -23.23817 44.02398 326 341 100 CMG-3ESP/60 GC244 PS6-SC 3216 2012-04-29 2013-04-28 HHZ HHN HHE
MS04 -23.10502 44.21986 439 341 100 Trillium-240 GC633 PS6-SC 3252 2012-05-03 2014-12-31 HHZ HHN HHE
MS05 -22.90606 44.46386 421 341 100 CMG-3ESP/60 GC254 PS6-SC 3246 2012-05-04 2012-09-29 HHZ HHN HHE
MS05 -22.90606 44.46386 421 341 100 CMG-3ESP/60 GC260 PS6-SC 3246 2012-09-30 2013-04-25 HHZ HHN HHE
MS05 -22.90606 44.46386 421 341 100 CMG-3ESP/60 GC238 PS6-SC 3240 2013-04-26 2014-12-31 HHZ HHN HHE
MS06 -22.88615 44.69135 820 341 100 CMG-3ESP/60 GC238 PS6-SC 3226 2012-05-05 2014-12-31 HHZ HHN HHE
MS06A -22.8271 44.73273 970 341 100 CMG-3ESP/60 GC252 PS6-SC 3226 2013-04-26 2014-12-31 HHZ HHN HHE
MS07 -22.81237 44.82891 663 341 100 Trillium-240 GC632 PS6-SC 3250 2012-04-28 2014-12-31 HHZ HHN HHE
MS08 -22.7548 45.11313 855 341 100 CMG-3ESP/60 GC245 PS6-SC 3249 2012-05-02 2014-12-31 HHZ HHN HHE
MS09 -22.48263 45.39815 723 341 100 CMG-3ESP/60 GC240 PS6-SC 3220 2012-05-04 2014-12-31 HHZ HHN HHE
MS10 -22.47355 45.56681 972 341 100 CMG-3ESP/60 GC249 PS6-SC 3241 2012-05-04 2014-12-31 HHZ HHN HHE
MS11 -22.5197 45.72152 961 341 100 Trillium-240 GC630 PS6-SC 3251 2012-05-03 2014-12-31 HHZ HHN HHE
MS12 -22.43738 45.91504 1038 341 100 CMG-3ESP/60 GC256 PS6-SC 3244 2012-05-03 2014-12-31 HHZ HHN HHE
MS13 -22.35751 46.0879 732 341 100 CMG-3ESP/60 GC255 PS6-SC 3242 2012-05-01 2014-12-31 HHZ HHN HHE
MS14 -22.29951 46.25156 721 341 100 CMG-3ESP/60 GC243 PS6-SC 3219 2012-05-01 2014-12-31 HHZ HHN HHE
MS15 -22.08547 46.40907 965 341 100 CMG-3ESP/60 GC250 PS6-SC 3225 2012-04-30 2014-01-11 HHZ HHN HHE
MS15 -22.08547 46.40907 965 341 100 CMG-3ESP/60 GC250 PS6-SC 3246 2014-01-12 2014-12-31 HHZ HHN HHE
MS16 -21.93573 46.543 772 341 100 CMG-3ESP/60 GC248 PS6-SC 3217 2012-05-01 2014-12-31 HHZ HHN HHE
MS17 -21.78999 46.92598 963 341 50 L4-3D 4189 CUBE 634 2013-04-27 2014-12-31 HHZ HHN HHE
MS17 -21.78999 46.92598 963 341 100 CMG-3ESP/60 GC252 PS6-SC 3247 2012-04-30 2013-04-26 HHZ HHN HHE
MS18 -21.59757 46.99488 1200 341 100 CMG-3ESP/60 GC260 PS6-SC 3248 2012-04-30 2014-12-31 HHZ HHN HHE
MS18A -21.59754 46.99477 1200 341 100 CMG-3ESP/60 GC257 PS6-SC 3247 2013-05-04 2014-12-31 HHZ HHN HHE
MS19 -21.40929 47.10285 1140 341 100 CMG-3ESP/60 GC239 PS6-SC 3245 2012-05-07 2014-12-31 HHZ HHN HHE
MS20 -21.33165 47.27146 1126 341 100 Trillium-240 GC634 PS6-SC 3253 2012-05-08 2014-12-31 HHZ HHN HHE
MS21 -21.23891 47.38246 1135 341 100 CMG-3ESP/60 GC253 PS6-SC 3218 2012-05-08 2014-12-31 HHZ HHN HHE
MS22 -21.33823 47.61607 463 341 50 L4-3D 400289 CUBE 731 2013-05-05 2014-12-31 HHZ HHN HHE
MS22 -21.33823 47.61607 463 341 100 CMG-3ESP/60 GC247 PS6-SC 3240 2012-04-26 2013-05-05 HHZ HHN HHE
MS23 -21.35424 47.77802 254 341 100 CMG-3ESP/60 GC251 PS6-SC 3215 2012-04-27 2014-12-31 HHZ HHN HHE
MS24 -21.42538 48.03929 197 341 100 Trillium-240 GC631 PS6-SC 3254 2012-04-28 2014-12-31 HHZ HHN HHE
MS25 -21.27671 48.17101 76 341 100 CMG-3ESP/60 GC242 PS6-SC 3243 2012-04-28 2014-12-31 HHZ HHN HHE
MS25A -21.2876 48.1858 109 341 50 L4-3D 3054 CUBE 726 2013-05-08 2014-12-31 HHZ HHN HHE

Fig. 1 Station distribution in experiment (red symbols). If present, white-filled symbols show permanent stations and other temporary experiments archived at EIDA or IRIS-DMC, whose activity period overlapped at least partially with the time of the experiment. If present, open symbols show station sites which were no longer active at the time of the experiment, e.g. prior temporary experiments.

_images/P4280095_downsampled.JPG

Fig. 2 Typical station installation - sensor, data logger and battery are buried for protection against daily temperature cycle and vandalism (picture shows MS04).

_images/2012_2014_2_time.png

Fig. 3 Overview of uptimes of all stations generated with obspy-scan

_images/edlstat_ZE_12_a.png

Fig. 4 Status report of EDL stations for 2012 showing restart events (AVR), service times (flush) and potential GPS problems (vertical bars indicating temporary gaps in GPS coverage). Generally even station with a large number number of GPS gaps will provide reliable timing as long as at least one GPS lock per day is picked up.

_images/edlstat_ZE_13_a.png

Fig. 5 (as Fig. 5) but for 2013.

_images/edlstat_ZE_14_a.png

Fig. 6 (as Fig. 4) but for 2014.

HHZ HHN HHE
_images/AM01_HHZ.list.pkl.bz2.png _images/AM01_HHN.list.pkl.bz2.png _images/AM01_HHE.list.pkl.bz2.png
_images/AM02_HHZ.list.pkl.bz2.png _images/AM02_HHN.list.pkl.bz2.png _images/AM02_HHE.list.pkl.bz2.png
_images/AM04_HHZ.list.pkl.bz2.png _images/AM04_HHN.list.pkl.bz2.png _images/AM04_HHE.list.pkl.bz2.png
_images/AM05_HHZ.list.pkl.bz2.png _images/AM05_HHN.list.pkl.bz2.png _images/AM05_HHE.list.pkl.bz2.png
_images/AM06_HHZ.list.pkl.bz2.png _images/AM06_HHN.list.pkl.bz2.png _images/AM06_HHE.list.pkl.bz2.png
_images/AM07_HHZ.list.pkl.bz2.png _images/AM07_HHN.list.pkl.bz2.png _images/AM07_HHE.list.pkl.bz2.png
_images/AM08_HHZ.list.pkl.bz2.png _images/AM08_HHN.list.pkl.bz2.png _images/AM08_HHE.list.pkl.bz2.png
_images/AM09_HHZ.list.pkl.bz2.png _images/AM09_HHN.list.pkl.bz2.png _images/AM09_HHE.list.pkl.bz2.png
_images/AM10_HHZ.list.pkl.bz2.png _images/AM10_HHN.list.pkl.bz2.png _images/AM10_HHE.list.pkl.bz2.png
_images/AM11_HHZ.list.pkl.bz2.png _images/AM11_HHN.list.pkl.bz2.png _images/AM11_HHE.list.pkl.bz2.png
_images/AM12_HHZ.list.pkl.bz2.png _images/AM12_HHN.list.pkl.bz2.png _images/AM12_HHE.list.pkl.bz2.png
_images/AM13_HHZ.list.pkl.bz2.png _images/AM13_HHN.list.pkl.bz2.png _images/AM13_HHE.list.pkl.bz2.png
_images/AM14_HHZ.list.pkl.bz2.png _images/AM14_HHN.list.pkl.bz2.png _images/AM14_HHE.list.pkl.bz2.png
_images/AM15_HHZ.list.pkl.bz2.png _images/AM15_HHN.list.pkl.bz2.png _images/AM15_HHE.list.pkl.bz2.png
_images/AM16_HHZ.list.pkl.bz2.png _images/AM16_HHN.list.pkl.bz2.png _images/AM16_HHE.list.pkl.bz2.png
_images/AM17_HHZ.list.pkl.bz2.png _images/AM17_HHN.list.pkl.bz2.png _images/AM17_HHE.list.pkl.bz2.png
_images/AM18_HHZ.list.pkl.bz2.png _images/AM18_HHN.list.pkl.bz2.png _images/AM18_HHE.list.pkl.bz2.png
_images/AM19_HHZ.list.pkl.bz2.png _images/AM19_HHN.list.pkl.bz2.png _images/AM19_HHE.list.pkl.bz2.png
_images/AM20_HHZ.list.pkl.bz2.png _images/AM20_HHN.list.pkl.bz2.png _images/AM20_HHE.list.pkl.bz2.png
_images/AM21_HHZ.list.pkl.bz2.png _images/AM21_HHN.list.pkl.bz2.png _images/AM21_HHE.list.pkl.bz2.png
_images/AM22_HHZ.list.pkl.bz2.png _images/AM22_HHN.list.pkl.bz2.png _images/AM22_HHE.list.pkl.bz2.png
_images/AM23_HHZ.list.pkl.bz2.png _images/AM23_HHN.list.pkl.bz2.png _images/AM23_HHE.list.pkl.bz2.png
_images/MS01_1_HHZ.list.pkl.bz2.png _images/MS01_1_HHN.list.pkl.bz2.png _images/MS01_1_HHE.list.pkl.bz2.png
_images/MS01_2_HHZ.pkl.bz2.png _images/MS01_2_HHN.list.pkl.bz2.png _images/MS01_2_HHE.list.pkl.bz2.png
_images/MS02_1_HHZ.pkl.bz2.png _images/MS02_1_HHN.list.pkl.bz2.png _images/MS02_1_HHE.list.pkl.bz2.png
_images/MS02_2_HHZ.pkl.bz2.png _images/MS02_2_HHN.list.pkl.bz2.png _images/MS02_2_HHE.list.pkl.bz2.png
_images/MS03_1_HHZ.pkl.bz2.png _images/MS03_1_HHN.list.pkl.bz2.png _images/MS03_1_HHE.list.pkl.bz2.png
_images/MS03_2_HHZ.pkl.bz2.png _images/MS03_2_HHN.list.pkl.bz2.png _images/MS03_2_HHE.list.pkl.bz2.png
_images/MS04_HHZ.list.pkl.bz2.png _images/MS04_HHN.list.pkl.bz2.png _images/MS04_HHE.list.pkl.bz2.png
_images/MS05_1_HHZ.pkl.bz2.png _images/MS05_1_HHN.list.pkl.bz2.png _images/MS05_1_HHE.list.pkl.bz2.png
_images/MS05_2_HHZ.pkl.bz2.png _images/MS05_2_HHN.list.pkl.bz2.png _images/MS05_2_HHE.list.pkl.bz2.png
_images/MS05_3_HHZ.pkl.bz2.png _images/MS05_3_HHN.list.pkl.bz2.png _images/MS05_3_HHE.list.pkl.bz2.png
_images/MS06_HHZ.list.pkl.bz2.png _images/MS06_HHN.list.pkl.bz2.png _images/MS06_HHE.list.pkl.bz2.png
_images/MS06A_HHZ.list.pkl.bz2.png _images/MS06A_HHN.list.pkl.bz2.png _images/MS06A_HHE.list.pkl.bz2.png
_images/MS07_HHZ.list.pkl.bz2.png _images/MS07_HHN.list.pkl.bz2.png _images/MS07_HHE.list.pkl.bz2.png
_images/MS08_HHZ.list.pkl.bz2.png _images/MS08_HHN.list.pkl.bz2.png _images/MS08_HHE.list.pkl.bz2.png
_images/MS09_HHZ.list.pkl.bz2.png _images/MS09_HHN.list.pkl.bz2.png _images/MS09_HHE.list.pkl.bz2.png
_images/MS10_HHZ.list.pkl.bz2.png _images/MS10_HHN.list.pkl.bz2.png _images/MS10_HHE.list.pkl.bz2.png
_images/MS11_HHZ.list.pkl.bz2.png _images/MS11_HHN.list.pkl.bz2.png _images/MS11_HHE.list.pkl.bz2.png
_images/MS12_HHZ.list.pkl.bz2.png _images/MS12_HHN.list.pkl.bz2.png _images/MS12_HHE.list.pkl.bz2.png
_images/MS13_HHZ.list.pkl.bz2.png _images/MS13_HHN.list.pkl.bz2.png _images/MS13_HHE.list.pkl.bz2.png
_images/MS14_HHZ.list.pkl.bz2.png _images/MS14_HHN.list.pkl.bz2.png _images/MS14_HHE.list.pkl.bz2.png
_images/MS15_1_HHZ.list.pkl.bz2.png _images/MS15_1_HHN.list.pkl.bz2.png _images/MS15_1_HHE.list.pkl.bz2.png
_images/MS15_2_HHZ.list.pkl.bz2.png _images/MS15_2_HHN.list.pkl.bz2.png _images/MS15_2_HHE.list.pkl.bz2.png
_images/MS16_HHZ.list.pkl.bz2.png _images/MS16_HHN.list.pkl.bz2.png _images/MS16_HHE.list.pkl.bz2.png
_images/MS17_1_HHZ.pkl.bz2.png _images/MS17_1_HHN.list.pkl.bz2.png _images/MS17_1_HHE.list.pkl.bz2.png
_images/MS17_2_HHZ.pkl.bz2.png _images/MS17_2_HHN.list.pkl.bz2.png _images/MS17_2_HHE.list.pkl.bz2.png
_images/MS19_HHZ.list.pkl.bz2.png _images/MS19_HHN.list.pkl.bz2.png _images/MS19_HHE.list.pkl.bz2.png
_images/MS20_HHZ.list.pkl.bz2.png _images/MS20_HHN.list.pkl.bz2.png _images/MS20_HHE.list.pkl.bz2.png
_images/MS21_HHZ.list.pkl.bz2.png _images/MS21_HHN.list.pkl.bz2.png _images/MS21_HHE.list.pkl.bz2.png
_images/MS22_1_HHZ.pkl.bz2.png _images/MS22_1_HHN.list.pkl.bz2.png _images/MS22_1_HHE.list.pkl.bz2.png
_images/MS22_2_HHZ.pkl.bz2.png _images/MS22_2_HHN.list.pkl.bz2.png _images/MS22_2_HHE.list.pkl.bz2.png
_images/MS23_HHZ.list.pkl.bz2.png _images/MS23_HHN.list.pkl.bz2.png _images/MS23_HHE.list.pkl.bz2.png
_images/MS24_HHZ.list.pkl.bz2.png _images/MS24_HHN.list.pkl.bz2.png _images/MS24_HHE.list.pkl.bz2.png
_images/MS25A_HHZ.list.pkl.bz2.png _images/MS25A_HHN.list.pkl.bz2.png _images/MS25A_HHE.list.pkl.bz2.png

Fig. 7 Noise probability density functions for all stations for database holdings